
Select the right
cloud-based
DB for your
project
How to Choose the Best Database
for Scalability, Consistency, and
Performance

by Marian Veteanu

Cloud database deployment models

In this presentation, we will analyze the options that cloud computing
offers when it comes to databases. If you're planning to build a SaaS
application or even perform a basic lift-and-shift of your app from on-
premises to the cloud, you will almost certainly need to select a
database.

At a high level, there are three main ways to deploy your database:

Traditional Database in a VM (IaaS): You run a traditional database
system (like MySQL, PostgreSQL, or SQL Server) on a virtual machine
(VM) in the cloud. You manage everything, including patching, backups,
scaling, and monitoring. You’re probably considering this as a first step
when doing a lift-and-shift operation.

Database as a Service (DBaaS): A database service offered by all
major cloud providers where they manages most operational tasks,
such as backups, patching, and scaling, while you maintain control
over configurations and performance settings.

Serverless DB: A fully managed, database model that automatically
scales based on workload demands. Users are charged based on
actual usage, with no need to provision capacity in advance. You
interact only with the database for querying and data management.

Managed Cloud Database is a broad term that refers to any database where the cloud provider handles the
majority of operational tasks, such as backups, scaling, patching, and updates. Both DBaaS (Database as a
Service) and Serverless Database fall under this umbrella because they are managed by the cloud provider,
but they differ in the level of automation and scaling.

M
an

ag
ed

 C
lo

ud
 D

at
ab

as
e

Single node or Distributed
Should you deploy a single-node database or a distributed DB?

Single Node Databases

A database that runs on a single server,
with all data stored, processed, and
queried on that one machine.

Best for small to medium applications
with predictable traffic and
applications that do not require global
availability or high availability across
regions.

Examples: MySQL, PostgreSQL,
SQLite.

▪ Simplicity: Easier to manage and
configure, suitable for smaller-
scale applications.

▪ Low Latency: Faster access to
data since it’s all local to one
machine.

▪ Limited Scalability: Vertical
scaling is required (adding more
CPU, RAM, or storage to a single
machine). However, this approach
has limitations as the hardware
eventually maxes out.

▪ Risk of Single Point of Failure: If
the server goes down, the entire
database becomes unavailable,
unless there’s a backup and
failover system.

Distributed Databases

A DB that spans across multiple servers
(or nodes), where data is distributed
across the nodes in a cluster. These
nodes can be located in different data
centers or geographic regions.

Best for large-scale applications
requiring high availability and global
distribution and applications with
unpredictable or rapidly growing
traffic and high read/write throughput.

Examples: Amazon DynamoDB, Google
Cloud Spanner, Apache Cassandra.

▪ Horizontal Scalability: Easily add
more nodes to handle increased
data and workload demands,
providing nearly unlimited scaling.

▪ Fault Tolerance: Built-in HA and
redundancy. If one node fails,
another can take over.

▪ Global Availability: Data can be
replicated across multiple regions,
ensuring low-latency access for
users across the globe.

▪ Complexity: More complex to
manage and operate.

Overview of Database Types

Understanding the different database types is crucial. Each
type is designed to meet specific use cases based on data
structure, scalability, and application requirements.

Relational Databases (SQL)

Relational databases store data in
structured tables using SQL (Structured
Query Language) for querying and
managing data.

They feature ACID compliance for
strong consistency and reliability and
are best for transactional applications
with complex queries and relationships
between data (e.g., joins).

Examples: MySQL, PostgreSQL,
Microsoft SQL Server

NoSQL Databases

NoSQL databases are designed for
unstructured, schema-less data,
offering scalability across distributed
systems.

They work best for distributed
applications like real-time data
processing, IoT systems, and social
networks.

Examples:

▪ Document-Based: Store data in
flexible, JSON-like documents
(e.g. MongoDB, Couchbase).

▪ Key-Value Store: Simple key-
value pairs, optimized for fast
lookups (e.g. Amazon DynamoDB,
Redis).

▪ Column-Family: Data stored in
columns rather than rows, for
high-scale analytics (e.g.
Cassandra).

NewSQL Databases

Combine the scalability of NoSQL with
the ACID compliance and query
capabilities of traditional relational
databases, to support large-scale,
distributed transactions while
maintaining strong consistency.

Examples: Google Spanner,
CockroachDB

Relational Databases (SQL)

NewSQL Databases

NoSQL Databases

Programming SQL vs NoSQL databases

SQL and NoSQL databases differ in how they store and query
data. SQL databases use structured tables with relationships,
while NoSQL databases use flexible, schema-less formats like
documents, key-value pairs, or graphs. The programming
experience differ between these two types of DBs.

const db = admin.firestore();

const usersRef = db.collection('users');
const query = usersRef.where('age', '>', 25);

try {
 const snapshot = await query.get();
 if (snapshot.empty)
 return;

 snapshot.forEach(doc => {
 console.log(doc.id, '=>', doc.data());
 });
} catch (error) {
 console.error('Error fetching documents:', error);
}

try {
 const sql = 'SELECT * FROM users WHERE age > ?';
 const [rows] = await connection.execute(sql, [25]);

 console.log(rows);
} catch (error) {
 console.error('Error executing query:', error);

} finally {
 await connection.end();

}

MySQL example

Firebase (a NoSQL DB) example

About Data Consistency
Data consistency refers to the correctness and uniformity of
data across all nodes or systems and impacts how and when
data becomes available across distributed systems.

Strong Consistency

Data is always up-to-date across all
nodes. The DB guarantees that after a
transaction is committed, all
subsequent reads will reflect that
committed data across all replicas.

Select a DB with strong consistency if
you're building an app where data
integrity is critical (e.g. banking,
financial transaction, enterprise app,
etc.)

Trade-offs: You Can expect latency
due to coordination between replicas
to ensure data consistency before
responding to requests.

What DB?: Almost all relational
databases (SQL based) offer strong
consistency. Some new distributed
systems like Google Cloud Spanner
also favor strong data consistency.

Eventual Consistency

Ensures that, given enough time, all
replicas will eventually reflect the
most recent write, but there is no
immediate guarantee of consistency
across nodes after a transaction.

DBs in this category, prioritizes
availability over strict consistency,
allowing for faster performance and
lower latency.

Select this type of DB for distributed
applications with high availability
needs and tolerable inconsistencies
(e.g., a social network).

Trade-offs: There is a risk of reading
stale data immediately after a write,
but the system is highly available.

What DB?: Most NoSQL databases,
Apache Cassandra.

The CAP Theorem highlights the trade-off between Consistency, Availability, and Partition
(e.g. network comm.) Tolerance. Strong consistency sacrifices availability or performance
for accurate data. Eventual consistency prioritizes availability and performance but allows
temporary inconsistencies. Consistency and Availability is unrealistic in distributed systems.

It's Physics: The CAP Theorem
The CAP Theorem (Consistency, Availability, and Partition
Tolerance), introduced by Eric Brewer, defines fundamental limits
for distributed systems.

Much like physical laws that govern the natural world, CAP
constrains what distributed databases can achieve when a
network failure (partition) occurs.

Consistency (C): Every read receives the most recent write or an
error, ensuring up-to-date data across all nodes.

Availability (A): Every request receives a response, even if it
returns outdated data during network issues.

Partition Tolerance (P): The system continues operating despite a
network partition, where some nodes cannot communicate.

Just as you can't break the laws of physics, a distributed DB can
only have two of the three properties during a network partition:

Consistency and Partition Tolerance (CP): The system ensures
consistency but may sacrifice availability. E.g. Google Cloud
Spanner

Availability and Partition Tolerance (AP): The system remains
available but might show inconsistent data. E.g. Amazon
DynamoDB

Why Eventual Consistency
Databases Scale Better?

Eventual consistency sacrifices immediate consistency in favor of
increased write performance and lower latency.

The performance boost and reduced latency allow eventual
consistency databases to handle high-volume, low-latency
workloads with better efficiency, particularly for applications that
don't require instant consistency.

This design choice provides several key advantages in scalability:

▪ In eventual consistency systems, data is replicated
asynchronously across multiple nodes or regions, allowing
write operations to be processed locally without waiting for
synchronization.

▪ By not requiring all replicas to have the most up-to-date data at
all times, eventual consistency systems allow nodes to operate
more independently.

▪ Eventual consistency databases are designed to tolerate
network partitions, meaning they continue to function even if
nodes in the system become temporarily disconnected.

▪ With eventual consistency, read and write operations can be
distributed across multiple nodes without the need for real-
time coordination, reducing the load on individual servers.

Strong Consistency Databases

Strong consistency ensures that every read operation returns the
most recent write, guaranteeing that all users and applications
see the same data, regardless of which node in a distributed
system they access.

Strong consistency is typically associated with ACID (Atomicity,
Consistency, Isolation, Durability) guarantees, which are critical
for transactional integrity.

Use Cases for Strong Consistency

Most enterprise applications, healthcare systems, banking and
financial applications, etc.

DBs with strong consistency

Relational databases

▪ Oracle Database
▪ Microsoft SQL Server
▪ IBM Db2
▪ MariaDB
▪ PostgreSQL
▪ MySQL (with InnoDB Engine)

Distributed databases

▪ Google Cloud Spanner
▪ CockroachDB
▪ Amazon Aurora
▪ Azure Cosmos DB (when

strong consistency level
selected)

High Availability Databases
In databases, HA is achieved through redundancy, failover
mechanisms, and distributed architectures, ensuring
continuous service even in the event of hardware, software, or
network failures.

Amazon DynamoDB: Fully managed NoSQL database offering automatic
replication across multiple AWS regions, ensuring high availability and fault
tolerance.
Azure Cosmos DB (certain modes): Cosmos DB provides multiple consistency
models, including eventual consistency. This is the lowest-latency option, which
ensures that all replicas eventually converge to the same state.
Apache Cassandra: Distributed NoSQL database with peer-to-peer architecture,
enabling multi-node replication for HA and scalability.

Google Cloud Spanner: A globally distributed, strongly consistent database that
ensures HA through synchronous replication and automatic failover across
regions.
CockroachDB: A NewSQL database designed for high availability, with automatic
replication, failover, and horizontal scaling across nodes and regions.

Amazon RDS: Offers high availability with Multi-AZ (Availability Zone)
deployments, providing automatic failover in case of instance failure.
Azure SQL Database: Managed relational database with built-in HA through
active geo-replication, allowing continuous service even during regional failures.
Google Cloud SQL: Fully managed relational database service with automatic
backups, replication, and HA through failover across zones and regions.

NoSQL Databases using Eventual Consistency & High Availability

NewSQL Databases with Strong Consistency & High Availability

Managed SQL Databases configured for High Availability*

* Traditional SQL databases are generally better suited for vertical scaling rather than horizontal scaling (distributing data across
multiple nodes). This can limit the scalability of SQL databases configured for HA when handling very large-scale workloads.

Serverless Databases
Serverless Databases offer a cloud-native, fully managed
solution that automatically scales with demand and charges
only for the resources used.

Serverless databases can be designed to prioritize either strong
consistency or high availability, depending on the
application’s needs.

Amazon Aurora
Serverless

Relational
database (MySQL
and PostgreSQL
compatible) that
automatically
adjusts capacity
based on demand.

Azure SQL DB
Serverless

Auto-pauses
during inactivity
and scales
resources
automatically,
providing cost-
efficient database
solutions for low-
traffic
applications.

Google Cloud
Firestore

A fully managed
NoSQL
document
database that
scales
automatically
with traffic, ideal
for mobile, web,
and serverless
applications.

Use case-based database selection
Transactional Applications
(OLTP)

Best Fit: Relational Databases
(SQL)
Examples: E-commerce platforms,
banking systems, ERP systems.
Recommended Databases:
▪ Google Cloud SQL (MySQL/

PostgreSQL/ SQL Server)
▪ Amazon RDS
▪ Azure SQL Database
Why: Supports ACID transactions,
complex queries, and strong
consistency.

Real-Time Analytics

Best Fit: NoSQL or Column-
Family Databases
Examples: IoT applications,
sensor data analytics, real-time
dashboards.
Recommended Databases:
▪ Google Cloud Bigtable
▪ Amazon DynamoDB
▪ Azure Cosmos DB
Why: Designed for high
throughput, low-latency reads
and writes, and horizontal
scalability.

Content Management and
Document Storage

Best Fit: Document Databases
Examples: Blogs, content-heavy
websites, CMS platforms.
Recommended Databases:
▪ MongoDB Atlas
▪ Azure Cosmos DB (MongoDB

API)
▪ Google Firestore
Why: Flexible schema design with
JSON-based documens as the data
model may vary between records.

Scalable Global Applications

Best Fit: Globally Distributed
Databases
Examples: Global e-commerce
platforms, SaaS platforms.
Recommended Databases:
▪ Google Cloud Spanner
▪ Amazon Aurora Global

Database
▪ Azure Cosmos DB
Why: Provides global replication
with low-latency access and
strong consistency.

Popular Databases in AWS - 1
Relational Databases (SQL)

Amazon RDS
▪ Supports popular engines like MySQL, PostgreSQL, MariaDB, Oracle,

and SQL Server.
▪ Managed database with automatic backups, scaling, patching, and

high availability through Multi-AZ deployments.

Amazon Aurora
▪ A MySQL- and PostgreSQL-compatible relational database designed

for performance and availability.
▪ Offers up to 5x the throughput of standard MySQL and 3x that of

PostgreSQL with automatic scaling and failover across multiple
availability zones.

▪ Amazon Aurora offers a serverless option called Aurora Serverless,
which is a fully managed, on-demand, auto-scaling configuration for
Aurora.

Feature Amazon RDS Amazon Aurora

Supported Engines MySQL, PostgreSQL,
MariaDB, Oracle, SQL Server

MySQL-compatible,
PostgreSQL-compatible

Performance Standard (comparable to
traditional RDBMS)

5x MySQL and 3x
PostgreSQL performance

Storage Scaling Manual scaling, up to 64 TB Auto-scaling, up to 128 TB

High Availability Multi-AZ support (optional) Built-in HA with 6 copies
across 3 AZs

Global Replication No built-in global replication Aurora Global Database with
multi-region replication

Read Replicas Available, up to 5 replicas Up to 15 low-latency read
replicas

Popular Databases in AWS - 2
NoSQL Databases

Amazon DynamoDB
▪ Fully managed, key-value, and document NoSQL database.
▪ Supports automatic scaling, multi-region replication, and built-in high

availability for large-scale applications.

Amazon DocumentDB (with MongoDB compatibility)
▪ Fully managed document database service that supports MongoDB

workloads.
▪ Designed for scalability, availability, and fully managed cluster

replication.

Amazon ElastiCache
▪ Managed in-memory data store supporting Redis and Memcached.
▪ Provides sub-millisecond latency for real-time applications like caching,

session storage, and analytics.

Amazon Neptune
▪ Fully managed graph database service that supports both RDF and

property graph models.

Feature Amazon DynamoDB Amazon DocumentDB

Database Type NoSQL (Key-Value,
Document)

NoSQL (Document-based,
MongoDB-compatible)

Query Language DynamoDB API (NoSQL-
specific queries)

MongoDB API (Supports
MongoDB's query language)

Use Case High-volume, low-latency
applications, key-value

Applications requiring
MongoDB compatibility

Best for
Key-value and simple
document storage, highly
scalable apps

MongoDB-based workloads
needing scalability and
management in AWS

Popular Databases in Azure - 1
Relational Databases (SQL)

Azure SQL Database
▪ Fully managed relational database service based on SQL Server.
▪ Supports automatic scaling, high availability, and built-in security.

Azure SQL Managed Instance
• Managed instance of SQL Server with near 100% compatibility with the on-

premises SQL Server.

Azure Database for MySQL
▪ Managed MySQL database service with high availability and scalability.
▪ Ideal for open-source applications and developers familiar with MySQL.

Azure Database for PostgreSQL
▪ Managed PostgreSQL service offering features like auto-scaling, backups,

and high availability.
▪ Suitable for enterprise applications and analytics workloads.

Feature Azure SQL Database Azure SQL Managed Instance

Compatibility
Designed for cloud-native
applications with limited SQL
Server compatibility

Near 100% compatibility with
on-premises SQL Server, ideal
for migrations

Scalability Supports horizontal scaling
through elastic pools

Vertical scaling within the
instance; no support for elastic
pools

High Availability
Built-in high availability with
geo-redundancy and
automatic failover

Built-in high availability with
automatic failover within the
VNet, supports multiple
availability zones

Use Case
Best for new cloud-native
apps or modernizing existing
apps

Ideal for lift-and-shift migrations
of on-prem SQL Server to the
cloud

Popular Databases in Azure - 2
NoSQL Databases

Azure Table Storage
▪ NoSQL key-value store for structured data.
▪ Optimized for fast access and high availability at a low cost.

Azure Cosmos DB
▪ Globally distributed, multi-model database that supports document,

key-value, graph, and column-family data models.
▪ Offers multiple consistency models and is ideal for high-availability, low-

latency applications.
▪ Azure Cosmos DB is a multi-model database service that supports

several APIs*, allowing developers to work with different data models and
query languages.

SQL API: The default and most widely
used API in Cosmos DB. Ideal for
applications that require querying and
manipulating JSON documents using
familiar SQL commands.

SELECT * FROM c WHERE c.age > 30

MongoDB API: Ideal for MongoDB
developers who want to benefit from
Cosmos DB’s global distribution and
scalability without changing their
MongoDB codebase.

db.collection.find({ "age": { $gt: 30 } })

Cassandra API: Allows applications
built for Cassandra to run on Cosmos DB
using CQL (Cassandra Query Language).

Ideal for applications that need high
throughput and low-latency access to
distributed, wide-column data.

SELECT * FROM users WHERE age > 30;

Gremlin API: Supports the Gremlin
graph traversal language

Nodes (vertices) and edges
(relationships) are used to model
complex networks.

g.V().has('person', 'age',
gt(30)).values('name')

* Other API supported. Consult documentation.

Popular Databases in GCP - 1

Relational Databases (SQL)

Cloud SQL: Fully managed relational database service for MySQL,
PostgreSQL, and SQL Server.
Provides automated backups, replication, and high availability for SQL
workloads.

NewSQL Databases

Cloud Spanner: Fully managed, globally distributed, and horizontally
scalable NewSQL database. It combines the best aspects of traditional
relational databases (SQL, ACID compliance) with the performance,
scalability, and availability of NoSQL databases.

Spanner uses a relational
database model with support
for SQL queries, joins, and
strong consistency with ACID
transactions

Cloud Spanner is globally
distributed, meaning it can
automatically replicate data
across multiple regions and
ensure low-latency access
anywhere in the world.

Spanner provides horizontal scaling by
sharding data across multiple nodes. It
can handle growing workloads and
datasets without performance
degradation, unlike traditional relational
databases that require vertical scaling.

Supports standard SQL queries,
including joins, indexes, and complex
transactions, making it easy for
developers familiar with traditional
relational databases to adopt.

Popular Databases in GCP - 2
NoSQL Databases

Google Firestore (part of Firebase)
▪ Fully managed NoSQL document database, ideal for mobile, web,

and serverless applications.
▪ Supports real-time updates and offline data synchronization.

Google Bigtable
▪ Managed NoSQL wide-column store designed for large-scale, low-

latency workloads like time-series data, IoT, and financial data.
▪ Provides seamless scalability with automatic sharding and

replication.

Google BigQuery
▪ Fully managed, serverless, highly scalable data warehouse

designed for large-scale data analytics.
▪ Provides lightning-fast SQL-based querying over massive datasets

and supports integration with ML models for AI-powered analytics.

“Bigtable is a
NoSQL wide-
column database
optimized for
heavy reads and
writes.”

“BigQuery is an
enterprise data
warehouse for large
amounts of
relational structured
data.”

Other Popular DBaaS Providers

Beyond the major cloud platforms like AWS, Azure, and Google
Cloud, several other Database as a Service (DBaaS) providers
offer specialized database solutions.

MongoDB Atlas: Fully managed cloud database for MongoDB,
offering cross-cloud support on AWS, Azure, and Google Cloud.

CockroachDB Cloud: A fully managed distributed SQL
database offering strong consistency, high availability, and
horizontal scalability.

Fauna: A globally distributed serverless database that supports
GraphQL and ACID transactions.

PlanetScale: A MySQL-compatible distributed database built
on Vitess, designed for large-scale applications.

LibSQL: A cloud-hosted fork of SQLite that brings cloud-native
features to the simplicity of SQLite.

Key Considerations for
Selecting a Cloud Database - 1

Scalability
Vertical vs. Horizontal Scaling: Determine if the database can
scale vertically (increasing compute resources) or horizontally
(adding more instances/nodes).
Auto-scaling Capabilities: For simplified management, look for
databases that automatically adjust resources based on
demand, like serverless databases.

Performance and Latency
Low Latency Requirements: Choose databases that provide
fast response times, especially for real-time applications.
Geographical Distribution: If your users are distributed globally,
ensure the database offers multi-region deployments to
minimize latency.

Cost Efficiency
Pay-as-You-Go vs. Reserved Capacity: Analyze your workload
to decide between on-demand pricing or reserved instances for
long-term savings.

Data Consistency vs. Availability
ACID Compliance: For transactional systems that require strong
consistency, choose a relational database.
Eventual Consistency: NoSQL databases often trade strong
consistency for better availability and partition tolerance,
suitable for distributed apps.

Key Considerations for
Selecting a Cloud Database - 2

Security and Compliance
Data Encryption: Ensure the database offers encryption at rest
and in transit
Identity and Access Management (IAM): Look for integrated
IAM controls
Compliance Requirements: GDPR, HIPAA, or SOC 2

High Availability and Disaster Recovery
Built-in Redundancy: Check if the database offers automated
failover, replication, and backup features.

Integration with Other Services
Cloud Ecosystem: Ensure the database integrates well with
other services (e.g., analytics, machine learning, data lakes) in
your chosen cloud provider’s ecosystem.
Third-Party Tools: Check compatibility with external tools for
data pipelines, business intelligence, or monitoring.

Vendor Lock-In
Cross-Platform Support: Consider whether you need the
flexibility to migrate the database across different cloud
providers or hybrid environments.
Open-Source Options: If avoiding vendor lock-in is critical,
explore open-source databases that can be self-managed or
used across platforms.

Marian Veteanu
Technology Architect and Product Leader

Looking to see how I can
add value to your organization?

Message me!

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

	Slide 1
	Slide 2: Cloud database deployment models
	Slide 3: Single node or Distributed
	Slide 4: Overview of Database Types
	Slide 5: Programming SQL vs NoSQL databases
	Slide 6: About Data Consistency
	Slide 7: It's Physics: The CAP Theorem
	Slide 8: Why Eventual Consistency Databases Scale Better?
	Slide 9: Strong Consistency Databases
	Slide 10: High Availability Databases
	Slide 11: Serverless Databases
	Slide 12: Use case-based database selection
	Slide 13: Popular Databases in AWS - 1
	Slide 14: Popular Databases in AWS - 2
	Slide 15: Popular Databases in Azure - 1
	Slide 16: Popular Databases in Azure - 2
	Slide 17: Popular Databases in GCP - 1
	Slide 18: Popular Databases in GCP - 2
	Slide 19: Other Popular DBaaS Providers
	Slide 20: Key Considerations for Selecting a Cloud Database - 1
	Slide 21: Key Considerations for Selecting a Cloud Database - 2
	Slide 22: Marian Veteanu Technology Architect and Product Leader Looking to see how I can add value to your organization? Message me! https://www.linkedin.com/in/mveteanu/ https://x.com/mveteanu

