
Exploring Multi-Tenant
Architectures

Models, Benefits, and Challenges

by Marian Veteanu

Introduction to Multi-tenancy

You're considering building a B2B SaaS application to meet a
specific business need for organizations. In addition to
scalability and security, one of the key requirements for your
system is multitenancy, enabling you to efficiently serve multiple
customers (or tenants) from your cloud-based platform.

Each tenant's data should be isolated, and the tenants should be
unaware of the shared infrastructure.

How can we structure multi-tenancy for scalability and security?

Different types of multitenant architectures

Reference:
https://www.youtube.com/watch?v=UlbaPcyw4Hw
https://learn.microsoft.com/en-us/azure/architecture/guide/multitenant/approaches/control-planes

Multiple
Single-Tenant

(Isolated)

Shared App Server
DB per Tenant

Shared App Server
Schema per Tenant

Shared App Server
Shared DB / Schema

Multiple single-tenant apps with single DBs

App DB

tenant1.myapp.com

App DB

tenant2.myapp.com

App DB

tenantX.myapp.com

…

Management Portal

Control Plane
SaaS admin

Tenant 1

Tenant 2

Tenant X
C

reate new
 instances / U

pdate instances

Benefits

Maximum Isolation: High security as each tenant's data and
application are separated. Preferred in some regulated
industries.
Customizability: Tenants can have their own configurations and
custom features and me in control when updates are applied.
Regulatory requirements, can be more easily managed.
Performance: A tenant can be run on dedicated hardware not
shared with other tenants leading to maximum performance.
Lift and shift: This model offers a quick transition from on-prem
or legacy apps to modern cloud-based SaaS systems.

Challenges

High Cost for SaaS provider: Infrastructure costs scale linearly
with the number of tenants.
Complex Maintenance: Need to maintain multiple instances.
Can be mitigated by investing in management portal and control
plane, or use infrastructure as a code to automate tenant
installations and updates.

Shared App Server, Each tenant gets its own DB

App

DB

tenant1 DB

DB

Management Portal
Control Plane

SaaS admin

Tenant 1

Tenant 2

Tenant X

DB

tenant2 DB

tenantX DB

…

Tenant catalog

Benefits

Good Data Isolation: Each tenant has its own database,
reducing the risk of data leakage and making it easier to
manage security and compliance.
Centralized Application Management: Since the
application is shared, it simplifies updates, bug fixes, and
feature rollouts across all tenants without needing multiple
deployments.
Easier Backup and Scaling: Individual databases can be
backed up, restored, and scaled independently, offering
flexibility in managing resources for each tenant.

Challenges

Higher Database Overhead: While application servers are
shared, maintaining separate databases for each tenant
increases database management overhead and cost.
Complex Database Management: As the number of
tenants grows, managing numerous databases can
become operationally complex.

Se
rv

er
 1

Se
rv

er
 2

Shared App, Each tenant gets its own schema

App

tenant1 Schema

Management Portal
Control Plane

SaaS admin

Tenant 1

Tenant 2

Tenant X

…

Tenant catalog

tenant2 Schema

tenantX Schema

O
ptim

ization: You can spread the
schem

a to m
ore than 1 database

Tenants share a single database, but each tenant has its
own schema.

Benefits

Balance of Isolation and Cost: Allows for a degree of
isolation between tenants while still saving on
infrastructure costs.
Easier Customization: Allows custom configurations for
each tenant at the schema level.

Challenges

Moderate Complexity: Managing multiple schemas adds
a layer of complexity, particularly in scaling.
Database Size: The size of the database grows as more
schemas are added. Note: You can spread the schema
across multiple databases.

Model is good for applications needing a higher degree of
isolation but that don’t want to maintain separate
databases for each tenant.

Shared App, Shared DB / Schema

App

Management Portal

SaaS admin

Tenant 1

Tenant 2

Tenant X

Tenant ID
column

Tenants

Tenants share a single database and the same schema, with
tenant-specific data distinguished by a unique tenant identifier.

Benefits

Cost Efficiency: Only one database and one schema to
manage, reducing infrastructure costs.
Simplified Operations: A single version of the application
simplifies upgrades and maintenance.

Challenges

Data Security Concerns: Data needs to be carefully partitioned
at the application level.
Scalability Limits: As the number of tenants grows, the
database could become a bottleneck.

Suitable for SaaS providers who prioritize low costs and fast
onboarding of new customers.

SELECT *

FROM ORDERS

WHERE

TenantID = 1

Optimized Shared Schema Model (using Sharding)

Tenant ID
column

Tenants
T1
T2
T3

T4
T5
T5

T6
T6
T6

Orders

Orders

Orders

Tenant 1
Tenant 2
Tenant 3

Tenant 4
Tenant 5

Tenant 6

An optimization to the “Shared DB / Schema model” is to partition data
across multiple databases (or shards) to distribute the load. The
application routes tenant requests to the correct shard based on a
predefined sharding key (e.g., tenant ID)

Benefits

Scalability: Sharding allows for horizontal scaling by distributing
tenants across multiple databases, which helps handle larger
workloads and high traffic.
Performance Optimization: Sharding reduces the burden on any
single database, improving query performance and enabling faster data
access for tenants.

Challenges

Complex Sharding Logic: Determining the right sharding key and
implementing logic to route requests can add complexity to the
application architecture.
Data Movement: As tenants grow, data may need to be re-sharded,
which can be complex and introduce downtime or migration overhead.

Hybrid Approach

Tenant 1

Tenant 2

Tenant 3

Trial Users
OR

Low-level tier tenants

App Tenant 1 DB

Shared
App

tenant2 Schema tenant3 Schema

Shared
App

Tenants

Combining elements from different models, the hybrid
approach allows flexibility. For instance, high-value tenants
might have isolated databases, while lower-value tenants
share resources.

Benefits

Flexibility: The hybrid model can adapt based on tenant
size, value, or security requirements.
Cost Efficiency with Customization: Allows you to control
costs while providing customization options for key clients.

Challenges

Management Complexity: Managing multiple models
adds complexity in both design and maintenance.

The hybrid model works well for SaaS platforms with
diverse customer needs and varying levels of
customization or security requirements.

Comparing models

Model Cost Security Customizability Complexity Best Use Case

Single-Tenant (Isolated) High High High High High-security
apps, custom
needs

DB per Tenant Medium Medium Medium Medium Balanced needs
(medium size
SaaS)

Schema per Tenant High Medium-High Medium Medium Good data
isolation
(medium size
SaaS)

Shared DB / Schema Low Medium Low Low SaaS with many
small tenants

Hybrid Variable Variable Variable High Platform with
diverse
customer base

Marian Veteanu
Technology Architect and Product Leader

Looking to see how I can add value to your
organization? Message me!

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Marian Veteanu Technology Architect and Product Leader Looking to see how I can add value to your organization? Message me! https://www.linkedin.com/in/mveteanu/ https://x.com/mveteanu

