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Use Cases

Chat system that can answer questions 
from your internal knowledge base

Legal document search and analysis

Idea Generation using patent and 
research data to inspire new product 
ideas.



More Use cases: Part I
Sales and Marketing Insights

▪ Personalized Content: Generate tailored emails or product 

descriptions using customer data.

▪ Market Research: Summarize competitor data and market trends to 

support decision-making.

Employee Onboarding and Training

▪ Quick Knowledge Retrieval: Enable new hires to ask questions and 

get relevant answers from company resources.

▪ Customized Training: Generate personalized training programs based 

on job roles.

IT and Technical Support Automation

▪ Faster Issue Resolution: Retrieve past incident logs and guides for 

resolving tech issues.

▪ Developer Support: Provide real-time code snippets and best practices 

from internal repositories.

Supply Chain Optimization

▪ Inventory Forecasting: Generate forecasts based on real-time and 

historical data.

▪ Vendor Risk Management: Pull performance data from various 

sources to assess vendor risks.

Human Resources (HR)

▪ Resume Screening: Automatically retrieve and match candidate 

profiles with job descriptions.

▪ Sentiment Analysis: Summarize employee feedback for actionable 

insights.

Healthcare and Life Sciences

▪ Clinical Trial Research: Retrieve relevant studies and trials to 

accelerate research.

▪ Diagnosis Support: Provide doctors with real-time access to the latest 

medical research.



More Use cases: Part II
Contract and Legal Document Analysis

▪ Contract Summaries: Automatically extract key clauses and risks from 

contracts.

▪ Legal Research: Retrieve relevant case law and precedents for faster 

legal analysis.

Customer Data Insights

▪ Customer 360 View: Integrate and retrieve customer data from multiple 

sources for a comprehensive view.

▪ Feedback Analysis: Summarize feedback from various channels for 

insights into product improvement.

Financial Services and Risk Analysis

▪ Fraud Detection: Retrieve transaction patterns and risk data to identify 

fraud cases.

▪ Financial Analysis: Generate real-time financial reports and investment 

recommendations.

Product Development and Innovation

▪ Idea Generation: Pull data from patents and research to inspire new 

product ideas.

▪ R&D Collaboration: Retrieve internal and external research to support 

innovation efforts.

Knowledge Management

▪ Unified Search: Retrieve context-aware information across fragmented 

enterprise systems.

▪ Document Summaries: Generate concise summaries of long reports or 

documents.

Retail and E-Commerce

▪ Product Recommendations: Suggest personalized products based on 

browsing and sales data.

▪ Dynamic Pricing: Retrieve competitor and market data to optimize pricing 

strategies.



About Foundational Models

What Are Foundational Models?

▪ Large-scale models trained on vast amounts of diverse data.
▪ Capable of performing multiple tasks without task-specific 

training.
▪ Examples: GPT (OpenAI), Gemini (Google), Llama, and more.

Key Characteristics

▪ Pretrained: Built on extensive datasets, allowing 
generalization across different domains.

▪ Multimodal Capabilities: Some models handle text, images, 
and other forms of input.

▪ Transfer Learning: Fine-tuning these models for specific use 
cases with minimal data.

Benefits for Enterprises

▪ Scalability: Handle large, complex datasets efficiently.
▪ Versatility: Can be applied across various domains, from 

customer support to research.
▪ Cost-Effective: Leverage pre-existing knowledge without 

needing to train from scratch.

Large Language Models (LLMs) are a type of foundational model 
specifically designed to understand and generate human language.



Your First Encounter with an LLM

Many people’s first experience with a Large Language Model (LLM) 
is through chatbots or virtual assistants like ChatGPT, Google 
Assistant, Siri, or Alexa.

These assistants (powered by LLMs) are trained on a vast and 
diverse range of text data, sourced primarily from publicly 
available information such as books, websites, articles, forums, 
and other written content.

The models don’t have access to proprietary databases or private 
information unless explicitly provided during a conversation.

It is important to note that ChatGPT's training data has a cutoff 
point (September 2021 for older models), meaning it doesn’t have 
access to real-time information or events that occurred after this 
period.



Why Base LLMs Are Not Enough?

Hallucinations

Problem: Base LLMs often generate 
false or misleading information when 
they don’t have the answer.
Cause: LLMs are probabilistic and rely 
on patterns from their training data. 
When uncertain, they may 
"hallucinate" plausible-sounding but 
incorrect responses.
Impact: Can lead to unreliable 
insights, especially in critical business 
contexts.

Outdated Knowledge

Problem: LLMs are trained on data up 
to a specific point in time, meaning 
they do not have access to the latest 
information post-training.
Cause: Once an LLM is trained, it 
retains a fixed snapshot of the world’s 
knowledge. Updates require full 
retraining or fine-tuning, which is 
resource-intensive.
Impact: This can be a critical 
limitation in fast-moving industries or 
environments requiring real-time 
information (e.g., financial services, 
legal, R&D). Limited Context Windows

Problem: LLMs have a limited 
"memory" or context window, meaning 
they can only process a certain 
amount of text at once.
Cause: Models like GPT-4 can handle 
about 8,000 tokens (~6,000 words) in a 
single query, but enterprise data often 
spans far larger documents, making it 
hard to retrieve all necessary context 
in one go.
Impact: This limits the ability to 
effectively process large documents 
(e.g., legal contracts, scientific papers) 
or complex queries requiring multiple 
sources of data.

Retraining Challenges

Problem: Retraining or fine-tuning 
LLMs to incorporate new knowledge or 
adapt them to specific business needs 
is expensive and time-consuming.
Cause: Large-scale training of LLMs 
involves vast computational 
resources, and fine-tuning can require 
additional datasets and infrastructure.
Impact: For many businesses, 
retraining LLMs regularly is not 
practical or cost-effective, limiting 
their adaptability to specific or 
proprietary business needs.

Outdated Knowledge Hallucinations

Retraining Challenges

Limited Context Windows



Introducing RAG 
(Retrieval-Augmented Generation)

What is RAG?

Retrieval-Augmented Generation (RAG) combines the power 
of Large Language Models (LLMs) with real-time information 
retrieval from external sources.

LLMs generate text-based outputs, while RAG enhances 
them by retrieving relevant data from external knowledge 
bases, vector databases, or proprietary datasets.

Why RAG Matters for Enterprises?

Reduces Hallucinations: By incorporating real-time, factual 
information from business knowledge bases, RAG helps 
mitigate the risk of LLMs generating false or incorrect 
responses.

Leverages Proprietary Data: RAG enables LLMs to access 
and use up-to-date, proprietary business data that wasn't 
available during the model's initial training.

Real-Time Knowledge Access: RAG allows models to 
generate responses based on specific enterprise datasets, 
offering better answers tailored to business needs.



How RAG works?

1. Question or Query: User asks a question.

2. Information Retrieval: The system retrieves relevant 
documents or data from a database.

3. LLM Generation: The LLM uses this context to generate a 
more accurate and relevant response.
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Document ingestion
A vector database allows RAG systems to perform fast, accurate 
searches by comparing semantic embeddings rather than 
traditional keyword matching.

If the knowledge base of your business stays in a collection of PDF, 
Word documents, PowerPoint files, etc., then you can build the DB 
using a document ingestion phase.

Step 1: Select your documents: Find all relevant documents in 
various formats (PDF, Word, etc.). 

Step 2: Data Cleansing and Preprocessing: Convert documents 
into a clean, machine-readable format, remove unnecessary data

Step 3: Generate embeddings: Generate vector representations of 
the document’s content.

Step 4: Store embeddings in a Vector DB: Fast, scalable 
information retrieval.

Text Snippet: "Who is Marian Veteanu?"

Embedding: [0.023, -0.569, 0.245, 0.482, -0.091, 0.361, 0.128, 
-0.553, 0.734, -0.142, ...]

Embedding Model Vector DBScripts or ToolsDocs



About embeddings

What are Embeddings?

▪ Embeddings are dense, numerical representations of data (like text, images, 
or documents) in a high-dimensional vector space.

▪ They capture the semantic meaning of the data, enabling the system to find 
similarities or relevant information beyond keyword matching.

How to Create Embeddings?

▪ Choose an Embedding Model: Select a model that generates embeddings 
(e.g., OpenAI's text-embedding-ada-002, Sentence-Transformers, or BERT).

▪ Generate Embeddings: Use the model to convert the text into vectors. Each 
word, sentence, or document gets transformed into a vector representation.

Example:

import openai

openai.api_key = 'your-api-key-here'

# The text you want to generate embeddings for
text = "Who is Marian Veteanu?"

# Call the OpenAI Embedding API
response = openai.Embedding.create(
  input=text,
  model="text-embedding-ada-002" # OpenAI's embedding model
)

embedding = response['data'][0]['embedding']

[0.0123, -0.0345, 0.0789, 0.0121, -0.0567, ..., 0.0456]

(A list of numbers. 1536 dimensions for OpenAI's text-embedding-ada-002 model)



Vector databases

What are Vector Databases?

▪ Vector databases are specialized databases designed to store, manage, 
and search high-dimensional vectors (such as embeddings).

▪ These vectors represent the semantic meaning of data, allowing the 
system to retrieve relevant information based on similarity rather than 
exact matches.

▪ Vector databases can update dynamically, incorporating new 
embeddings as data is ingested.

Why Not Use a Regular Database?

▪ Regular databases (e.g., relational or NoSQL databases) are optimized 
for exact matches or basic keyword-based search.

▪ They are not designed to handle the complexity of semantic search, 
which relies on understanding the meaning of data rather than just 
matching keywords.

▪ Vector databases integrate deeply with machine learning pipelines and 
tools, enabling seamless storage and retrieval of embeddings. Regular 
databases would require custom solutions or inefficient workarounds to 
achieve the same functionality.

Use Case Example

A vector database stores embeddings for thousands of customer support 
tickets. When a new query comes in, the system can quickly retrieve the 
most relevant tickets based on their semantic similarity to the query.



Vector DB providers
Cloud-Based Vector Databases

Pinecone
https://www.pinecone.io 
A fully managed vector database designed for fast and scalable vector search. 
Pinecone provides filtering, real-time indexing, and is widely used in AI and ML-
powered applications.

Azure Cognitive Search with Vector Search
https://azure.microsoft.com/services/search/ 
Azure Cognitive Search it is fully managed and scales automatically.

Amazon Kendra
URL: https://aws.amazon.com/kendra/ 
Amazon Kendra is a highly accurate and easy-to-use search service supporting 
vector search.

Google Vertex AI Matching Engine
https://cloud.google.com/vertex-ai 
Google’s Vertex AI offers a matching engine that enables high-performance vector 
similarity search.

Open-Source Vector Databases

Weaviate
https://weaviate.io 

Milvus
https://milvus.io 

Qdrant
https://qdrant.tech 

Vespa
https://vespa.ai 

Vald
https://vald.vdaas.org 

Faiss (Facebook AI Similarity Search)
https://github.com/facebookresearch/faiss 

https://www.pinecone.io/
https://azure.microsoft.com/services/search/
https://aws.amazon.com/kendra/
https://cloud.google.com/vertex-ai
https://weaviate.io/
https://milvus.io/
https://qdrant.tech/
https://vespa.ai/
https://vald.vdaas.org/
https://github.com/facebookresearch/faiss


Prompting using context information
To enhance the accuracy and relevance of the Large Language Model’s 
(LLM) responses, integrating retrieved context (e.g., from vector 
databases) into the prompt ensures the model has up-to-date, domain-
specific knowledge.

How to Integrate Retrieved Information?

Step 1. Retrieve Relevant Data: Use RAG to pull specific, contextually 
relevant information from your vector database (e.g., proprietary 
documents or recent data).

Step 2. Embed the Context in the Prompt: Include the retrieved text or 
data in your prompt to give the LLM a knowledge base to work from.

Step 3. Send augmented prompt to LLM

Example

Prompt without Integration

“What are the latest trends in cloud computing?”

Prompt with Integrated Retrieval

“Based on the following information [retrieved 
context], what are the key trends in cloud 
computing that we should focus on?”

LLM may return 
generic, outdated 
information.

LLM uses the 
specific retrieved 
context to provide a 
relevant answer.

Summarize retrieved information if it’s too lengthy to fit within the model’s context window.



Code Sample: Part 1
A simple example on how to use RAG with OpenAI and Pinecode

▪ Install required packages

pip install openai pinecone-client

▪ Get the API keys from OpenAI and Pinecone (requires sign up)

▪ Set Up Pinecone Vector Database

▪ Create embeddings using OpenAI

# Sample documents you want to store as embeddings
documents = [
  "OpenAI is an AI research and deployment company.",
  "Pinecone provides a vector DB.",
  "RAG improves LLM accuracy by using external data."
]

# Generate embeddings using OpenAI
embeddings = []
for doc in documents:
  response = openai.Embedding.create(input=doc,   
   model="text-embedding-ada-002")
  embedding = response['data'][0]['embedding']
  embeddings.append(embedding)

# Store embeddings in Pinecone
# Use a simple id like 'doc0', 'doc1'
for i, emb in enumerate(embeddings):
  index.upsert(vectors=[(f"doc{i}", emb)]) 



Code Sample: Part 2
A simple example on how to use RAG with OpenAI and Pinecode

▪ Use OpenAI to Generate a Response

query = "What is Pinecone used for?"

query_embedding = openai.Embedding.create(
  input=query,
  model="text-embedding-ada-002"
)['data'][0]['embedding']

# Query Pinecone for similar vectors
result = index.query(queries=[query_embedding], top_k=2)

# Retrieve relevant documents using the match IDs
documents = [
  "OpenAI is an AI research and deployment company.",
  "Pinecone provides a vector DB.",
  "RAG improves LLM accuracy by using external data."
]
retrieved_docs = [documents[int(match['id'][-1])] for match 

   in result['matches']]

# Construct the prompt for OpenAI using retrieved context
context = "\n".join(retrieved_docs)
final_prompt = f"Context:\n{context}\n\nQuestion: 
{query}\nAnswer:"

# Generate a response from OpenAI
response = openai.Completion.create(
  engine="text-davinci-003",
  prompt=final_prompt,
  max_tokens=100
)

# Print the generated answer
print(response['choices'][0]['text'].strip())



Langchain and other frameworks

Before coding your first RAG application, you may want to 
checkout the different available frameworks such as 
Langchain, Transformers (by Hugging Face), LlamaIndex, 
Haystack, etc.

These frameworks may help you simplify complex workflows.

About Langchain 

Langchain is a popular framework designed to build and 
deploy applications that use Large Language Models (LLMs) 
efficiently.

It simplifies the integration of LLMs with external data sources, 
such as vector databases (like Pinecone), APIs, or other tools, 
to support Retrieval-Augmented Generation (RAG).

It helps with prompt engineering by allowing dynamic input 
data in prompts. It facilitates combining multiple LLM tasks 
and data retrieval steps into a single workflow (chains).



Security, Compliance, and Guardrails

▪ Ensure that sensitive, proprietary, and internal data used in 
Retrieval-Augmented Generation (RAG) workflows is 
securely managed and stored.

▪ Use access controls to limit who can interact with the 
vector database and LLM systems, ensuring only 
authorized personnel and systems have access to sensitive 
information.

▪ Adhere to regulatory frameworks such as GDPR, HIPAA, or 
CCPA. Ensure that data anonymization or 
pseudonymization techniques are applied when necessary 
to protect user privacy.

▪ Implement safeguards to regularly audit and mitigate 
biased outputs.

▪ Implement detailed logging and monitoring of all requests 
and responses in RAG systems to ensure that data usage is 
transparent and auditable in case of security or compliance 
reviews.

▪ Implement ethical guardrails to prevent misuse, ensuring 
that the RAG system aligns with the company’s ethical 
standards and regulatory obligations.



End-user tools
If you're interested in exploring the capabilities of LLM+RAG 
systems as an end-user, check out the following tools:

https://www.nomic.ai/gpt4all 

https://pdf.ai/ 

Reference:
https://www.linkedin.com/pulse/what-retrieval-augmented-generation-rag-why-its-hot-topic-nawaz-qmczc/
https://www.infoworld.com/article/2336099/retrieval-augmented-generation-step-by-step.html
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/

https://www.nomic.ai/gpt4all
https://pdf.ai/


Marian Veteanu
Technology Architect and Product Leader

Looking to see how I can 
add value to your organization? 

Message me!

https://www.linkedin.com/in/mveteanu/ 
https://x.com/mveteanu 

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu
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