
Harness
Proprietary Data with
Foundational Models
and RAG

by Marian Veteanu

Use Cases

Chat system that can answer questions
from your internal knowledge base

Legal document search and analysis

Idea Generation using patent and
research data to inspire new product
ideas.

More Use cases: Part I
Sales and Marketing Insights

▪ Personalized Content: Generate tailored emails or product

descriptions using customer data.

▪ Market Research: Summarize competitor data and market trends to

support decision-making.

Employee Onboarding and Training

▪ Quick Knowledge Retrieval: Enable new hires to ask questions and

get relevant answers from company resources.

▪ Customized Training: Generate personalized training programs based

on job roles.

IT and Technical Support Automation

▪ Faster Issue Resolution: Retrieve past incident logs and guides for

resolving tech issues.

▪ Developer Support: Provide real-time code snippets and best practices

from internal repositories.

Supply Chain Optimization

▪ Inventory Forecasting: Generate forecasts based on real-time and

historical data.

▪ Vendor Risk Management: Pull performance data from various

sources to assess vendor risks.

Human Resources (HR)

▪ Resume Screening: Automatically retrieve and match candidate

profiles with job descriptions.

▪ Sentiment Analysis: Summarize employee feedback for actionable

insights.

Healthcare and Life Sciences

▪ Clinical Trial Research: Retrieve relevant studies and trials to

accelerate research.

▪ Diagnosis Support: Provide doctors with real-time access to the latest

medical research.

More Use cases: Part II
Contract and Legal Document Analysis

▪ Contract Summaries: Automatically extract key clauses and risks from

contracts.

▪ Legal Research: Retrieve relevant case law and precedents for faster

legal analysis.

Customer Data Insights

▪ Customer 360 View: Integrate and retrieve customer data from multiple

sources for a comprehensive view.

▪ Feedback Analysis: Summarize feedback from various channels for

insights into product improvement.

Financial Services and Risk Analysis

▪ Fraud Detection: Retrieve transaction patterns and risk data to identify

fraud cases.

▪ Financial Analysis: Generate real-time financial reports and investment

recommendations.

Product Development and Innovation

▪ Idea Generation: Pull data from patents and research to inspire new

product ideas.

▪ R&D Collaboration: Retrieve internal and external research to support

innovation efforts.

Knowledge Management

▪ Unified Search: Retrieve context-aware information across fragmented

enterprise systems.

▪ Document Summaries: Generate concise summaries of long reports or

documents.

Retail and E-Commerce

▪ Product Recommendations: Suggest personalized products based on

browsing and sales data.

▪ Dynamic Pricing: Retrieve competitor and market data to optimize pricing

strategies.

About Foundational Models

What Are Foundational Models?

▪ Large-scale models trained on vast amounts of diverse data.
▪ Capable of performing multiple tasks without task-specific

training.
▪ Examples: GPT (OpenAI), Gemini (Google), Llama, and more.

Key Characteristics

▪ Pretrained: Built on extensive datasets, allowing
generalization across different domains.

▪ Multimodal Capabilities: Some models handle text, images,
and other forms of input.

▪ Transfer Learning: Fine-tuning these models for specific use
cases with minimal data.

Benefits for Enterprises

▪ Scalability: Handle large, complex datasets efficiently.
▪ Versatility: Can be applied across various domains, from

customer support to research.
▪ Cost-Effective: Leverage pre-existing knowledge without

needing to train from scratch.

Large Language Models (LLMs) are a type of foundational model
specifically designed to understand and generate human language.

Your First Encounter with an LLM

Many people’s first experience with a Large Language Model (LLM)
is through chatbots or virtual assistants like ChatGPT, Google
Assistant, Siri, or Alexa.

These assistants (powered by LLMs) are trained on a vast and
diverse range of text data, sourced primarily from publicly
available information such as books, websites, articles, forums,
and other written content.

The models don’t have access to proprietary databases or private
information unless explicitly provided during a conversation.

It is important to note that ChatGPT's training data has a cutoff
point (September 2021 for older models), meaning it doesn’t have
access to real-time information or events that occurred after this
period.

Why Base LLMs Are Not Enough?

Hallucinations

Problem: Base LLMs often generate
false or misleading information when
they don’t have the answer.
Cause: LLMs are probabilistic and rely
on patterns from their training data.
When uncertain, they may
"hallucinate" plausible-sounding but
incorrect responses.
Impact: Can lead to unreliable
insights, especially in critical business
contexts.

Outdated Knowledge

Problem: LLMs are trained on data up
to a specific point in time, meaning
they do not have access to the latest
information post-training.
Cause: Once an LLM is trained, it
retains a fixed snapshot of the world’s
knowledge. Updates require full
retraining or fine-tuning, which is
resource-intensive.
Impact: This can be a critical
limitation in fast-moving industries or
environments requiring real-time
information (e.g., financial services,
legal, R&D). Limited Context Windows

Problem: LLMs have a limited
"memory" or context window, meaning
they can only process a certain
amount of text at once.
Cause: Models like GPT-4 can handle
about 8,000 tokens (~6,000 words) in a
single query, but enterprise data often
spans far larger documents, making it
hard to retrieve all necessary context
in one go.
Impact: This limits the ability to
effectively process large documents
(e.g., legal contracts, scientific papers)
or complex queries requiring multiple
sources of data.

Retraining Challenges

Problem: Retraining or fine-tuning
LLMs to incorporate new knowledge or
adapt them to specific business needs
is expensive and time-consuming.
Cause: Large-scale training of LLMs
involves vast computational
resources, and fine-tuning can require
additional datasets and infrastructure.
Impact: For many businesses,
retraining LLMs regularly is not
practical or cost-effective, limiting
their adaptability to specific or
proprietary business needs.

Outdated Knowledge Hallucinations

Retraining Challenges

Limited Context Windows

Introducing RAG
(Retrieval-Augmented Generation)

What is RAG?

Retrieval-Augmented Generation (RAG) combines the power
of Large Language Models (LLMs) with real-time information
retrieval from external sources.

LLMs generate text-based outputs, while RAG enhances
them by retrieving relevant data from external knowledge
bases, vector databases, or proprietary datasets.

Why RAG Matters for Enterprises?

Reduces Hallucinations: By incorporating real-time, factual
information from business knowledge bases, RAG helps
mitigate the risk of LLMs generating false or incorrect
responses.

Leverages Proprietary Data: RAG enables LLMs to access
and use up-to-date, proprietary business data that wasn't
available during the model's initial training.

Real-Time Knowledge Access: RAG allows models to
generate responses based on specific enterprise datasets,
offering better answers tailored to business needs.

How RAG works?

1. Question or Query: User asks a question.

2. Information Retrieval: The system retrieves relevant
documents or data from a database.

3. LLM Generation: The LLM uses this context to generate a
more accurate and relevant response.

App

LLM

(Response)

(Prompt + Query)

App

Embedding
Model

Vector DB LLM

(Response)

(Query) (Query +
Embeddings)

(Prompt +
Query +
Context)

Without RAG

With RAG

Document ingestion
A vector database allows RAG systems to perform fast, accurate
searches by comparing semantic embeddings rather than
traditional keyword matching.

If the knowledge base of your business stays in a collection of PDF,
Word documents, PowerPoint files, etc., then you can build the DB
using a document ingestion phase.

Step 1: Select your documents: Find all relevant documents in
various formats (PDF, Word, etc.).

Step 2: Data Cleansing and Preprocessing: Convert documents
into a clean, machine-readable format, remove unnecessary data

Step 3: Generate embeddings: Generate vector representations of
the document’s content.

Step 4: Store embeddings in a Vector DB: Fast, scalable
information retrieval.

Text Snippet: "Who is Marian Veteanu?"

Embedding: [0.023, -0.569, 0.245, 0.482, -0.091, 0.361, 0.128,
-0.553, 0.734, -0.142, ...]

Embedding Model Vector DBScripts or ToolsDocs

About embeddings

What are Embeddings?

▪ Embeddings are dense, numerical representations of data (like text, images,
or documents) in a high-dimensional vector space.

▪ They capture the semantic meaning of the data, enabling the system to find
similarities or relevant information beyond keyword matching.

How to Create Embeddings?

▪ Choose an Embedding Model: Select a model that generates embeddings
(e.g., OpenAI's text-embedding-ada-002, Sentence-Transformers, or BERT).

▪ Generate Embeddings: Use the model to convert the text into vectors. Each
word, sentence, or document gets transformed into a vector representation.

Example:

import openai

openai.api_key = 'your-api-key-here'

The text you want to generate embeddings for
text = "Who is Marian Veteanu?"

Call the OpenAI Embedding API
response = openai.Embedding.create(
 input=text,
 model="text-embedding-ada-002" # OpenAI's embedding model
)

embedding = response['data'][0]['embedding']

[0.0123, -0.0345, 0.0789, 0.0121, -0.0567, ..., 0.0456]

(A list of numbers. 1536 dimensions for OpenAI's text-embedding-ada-002 model)

Vector databases

What are Vector Databases?

▪ Vector databases are specialized databases designed to store, manage,
and search high-dimensional vectors (such as embeddings).

▪ These vectors represent the semantic meaning of data, allowing the
system to retrieve relevant information based on similarity rather than
exact matches.

▪ Vector databases can update dynamically, incorporating new
embeddings as data is ingested.

Why Not Use a Regular Database?

▪ Regular databases (e.g., relational or NoSQL databases) are optimized
for exact matches or basic keyword-based search.

▪ They are not designed to handle the complexity of semantic search,
which relies on understanding the meaning of data rather than just
matching keywords.

▪ Vector databases integrate deeply with machine learning pipelines and
tools, enabling seamless storage and retrieval of embeddings. Regular
databases would require custom solutions or inefficient workarounds to
achieve the same functionality.

Use Case Example

A vector database stores embeddings for thousands of customer support
tickets. When a new query comes in, the system can quickly retrieve the
most relevant tickets based on their semantic similarity to the query.

Vector DB providers
Cloud-Based Vector Databases

Pinecone
https://www.pinecone.io
A fully managed vector database designed for fast and scalable vector search.
Pinecone provides filtering, real-time indexing, and is widely used in AI and ML-
powered applications.

Azure Cognitive Search with Vector Search
https://azure.microsoft.com/services/search/
Azure Cognitive Search it is fully managed and scales automatically.

Amazon Kendra
URL: https://aws.amazon.com/kendra/
Amazon Kendra is a highly accurate and easy-to-use search service supporting
vector search.

Google Vertex AI Matching Engine
https://cloud.google.com/vertex-ai
Google’s Vertex AI offers a matching engine that enables high-performance vector
similarity search.

Open-Source Vector Databases

Weaviate
https://weaviate.io

Milvus
https://milvus.io

Qdrant
https://qdrant.tech

Vespa
https://vespa.ai

Vald
https://vald.vdaas.org

Faiss (Facebook AI Similarity Search)
https://github.com/facebookresearch/faiss

https://www.pinecone.io/
https://azure.microsoft.com/services/search/
https://aws.amazon.com/kendra/
https://cloud.google.com/vertex-ai
https://weaviate.io/
https://milvus.io/
https://qdrant.tech/
https://vespa.ai/
https://vald.vdaas.org/
https://github.com/facebookresearch/faiss

Prompting using context information
To enhance the accuracy and relevance of the Large Language Model’s
(LLM) responses, integrating retrieved context (e.g., from vector
databases) into the prompt ensures the model has up-to-date, domain-
specific knowledge.

How to Integrate Retrieved Information?

Step 1. Retrieve Relevant Data: Use RAG to pull specific, contextually
relevant information from your vector database (e.g., proprietary
documents or recent data).

Step 2. Embed the Context in the Prompt: Include the retrieved text or
data in your prompt to give the LLM a knowledge base to work from.

Step 3. Send augmented prompt to LLM

Example

Prompt without Integration

“What are the latest trends in cloud computing?”

Prompt with Integrated Retrieval

“Based on the following information [retrieved
context], what are the key trends in cloud
computing that we should focus on?”

LLM may return
generic, outdated
information.

LLM uses the
specific retrieved
context to provide a
relevant answer.

Summarize retrieved information if it’s too lengthy to fit within the model’s context window.

Code Sample: Part 1
A simple example on how to use RAG with OpenAI and Pinecode

▪ Install required packages

pip install openai pinecone-client

▪ Get the API keys from OpenAI and Pinecone (requires sign up)

▪ Set Up Pinecone Vector Database

▪ Create embeddings using OpenAI

Sample documents you want to store as embeddings
documents = [
 "OpenAI is an AI research and deployment company.",
 "Pinecone provides a vector DB.",
 "RAG improves LLM accuracy by using external data."
]

Generate embeddings using OpenAI
embeddings = []
for doc in documents:
 response = openai.Embedding.create(input=doc,
 model="text-embedding-ada-002")
 embedding = response['data'][0]['embedding']
 embeddings.append(embedding)

Store embeddings in Pinecone
Use a simple id like 'doc0', 'doc1'
for i, emb in enumerate(embeddings):
 index.upsert(vectors=[(f"doc{i}", emb)])

Code Sample: Part 2
A simple example on how to use RAG with OpenAI and Pinecode

▪ Use OpenAI to Generate a Response

query = "What is Pinecone used for?"

query_embedding = openai.Embedding.create(
 input=query,
 model="text-embedding-ada-002"
)['data'][0]['embedding']

Query Pinecone for similar vectors
result = index.query(queries=[query_embedding], top_k=2)

Retrieve relevant documents using the match IDs
documents = [
 "OpenAI is an AI research and deployment company.",
 "Pinecone provides a vector DB.",
 "RAG improves LLM accuracy by using external data."
]
retrieved_docs = [documents[int(match['id'][-1])] for match

 in result['matches']]

Construct the prompt for OpenAI using retrieved context
context = "\n".join(retrieved_docs)
final_prompt = f"Context:\n{context}\n\nQuestion:
{query}\nAnswer:"

Generate a response from OpenAI
response = openai.Completion.create(
 engine="text-davinci-003",
 prompt=final_prompt,
 max_tokens=100
)

Print the generated answer
print(response['choices'][0]['text'].strip())

Langchain and other frameworks

Before coding your first RAG application, you may want to
checkout the different available frameworks such as
Langchain, Transformers (by Hugging Face), LlamaIndex,
Haystack, etc.

These frameworks may help you simplify complex workflows.

About Langchain

Langchain is a popular framework designed to build and
deploy applications that use Large Language Models (LLMs)
efficiently.

It simplifies the integration of LLMs with external data sources,
such as vector databases (like Pinecone), APIs, or other tools,
to support Retrieval-Augmented Generation (RAG).

It helps with prompt engineering by allowing dynamic input
data in prompts. It facilitates combining multiple LLM tasks
and data retrieval steps into a single workflow (chains).

Security, Compliance, and Guardrails

▪ Ensure that sensitive, proprietary, and internal data used in
Retrieval-Augmented Generation (RAG) workflows is
securely managed and stored.

▪ Use access controls to limit who can interact with the
vector database and LLM systems, ensuring only
authorized personnel and systems have access to sensitive
information.

▪ Adhere to regulatory frameworks such as GDPR, HIPAA, or
CCPA. Ensure that data anonymization or
pseudonymization techniques are applied when necessary
to protect user privacy.

▪ Implement safeguards to regularly audit and mitigate
biased outputs.

▪ Implement detailed logging and monitoring of all requests
and responses in RAG systems to ensure that data usage is
transparent and auditable in case of security or compliance
reviews.

▪ Implement ethical guardrails to prevent misuse, ensuring
that the RAG system aligns with the company’s ethical
standards and regulatory obligations.

End-user tools
If you're interested in exploring the capabilities of LLM+RAG
systems as an end-user, check out the following tools:

https://www.nomic.ai/gpt4all

https://pdf.ai/

Reference:
https://www.linkedin.com/pulse/what-retrieval-augmented-generation-rag-why-its-hot-topic-nawaz-qmczc/
https://www.infoworld.com/article/2336099/retrieval-augmented-generation-step-by-step.html
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/

https://www.nomic.ai/gpt4all
https://pdf.ai/

Marian Veteanu
Technology Architect and Product Leader

Looking to see how I can
add value to your organization?

Message me!

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

	Slide 1
	Slide 2: Use Cases
	Slide 3: More Use cases: Part I
	Slide 4: More Use cases: Part II
	Slide 5: About Foundational Models
	Slide 6: Your First Encounter with an LLM
	Slide 7: Why Base LLMs Are Not Enough?
	Slide 8: Introducing RAG (Retrieval-Augmented Generation)
	Slide 9: How RAG works?
	Slide 10: Document ingestion
	Slide 11: About embeddings
	Slide 12: Vector databases
	Slide 13: Vector DB providers
	Slide 14: Prompting using context information
	Slide 15: Code Sample: Part 1
	Slide 16: Code Sample: Part 2
	Slide 17: Langchain and other frameworks
	Slide 18: Security, Compliance, and Guardrails
	Slide 19: End-user tools
	Slide 20: Marian Veteanu Technology Architect and Product Leader Looking to see how I can add value to your organization? Message me! https://www.linkedin.com/in/mveteanu/ https://x.com/mveteanu

